Abstract

IntroductionMammographic breast density (MBD) is a known risk factor for breast cancer and older women have higher incidence rates of breast cancer occurrence. The Breast Imaging Reporting and Data System (BI-RADS) is a commonly used MBD classification tool for mammogram reporting. However, they have limitations since there are reading inconsistencies between different radiologists with the visual assessment of breast density. MethodsDigitised film-screen mammographic images were extracted from the Digital Database for Screening Mammography (DDSM). A machine learning project was developed using commercially available software with several predictive models applied to classify different amount of MBD on mammograms into different density groups. The effectiveness of different predictive models used in classifying the mammograms were tested by receiver operator characteristics (ROC) curve with comparison to the gold standard of BI-RADS classification. ResultsThree predictive models, Decision Tree (Tree), Support Vector Model (SVM) and k-Nearest Neighbour (kNN) showed high AUC values of 0.801, 0.805 and 0.810 respectively. High AUC values for the three predictive models indicates that the accuracy of the model is approaching that of the BI-RADS method. DiscussionOur machine learning project showed to have capabilities to be potentially used in the clinical settings to help categorise mammograms into extremely dense breasts (BI-RADS Group A) from entirely fatty breasts (BI-RADS Group D). ConclusionFindings from the present study suggest that the machine learning method is potentially useful to quantify the amount of MBD in mammograms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call