Abstract

IntroductionUndiagnosed and untreated lung pathologies are among the leading causes of neonatal deaths in developing countries. Lung Ultrasound (LUS) has been widely accepted as a diagnostic tool for neonatal lung pathologies due to its affordability, portability, and safety. However, healthcare institutions in developing countries lack well-trained clinicians to interpret LUS images, which limits the use of LUS, especially in remote areas. An automated point-of-care tool that could screen and capture LUS morphologies associated with neonatal lung pathologies could aid in rapid and accurate diagnosis.MethodsWe propose a framework for classifying the six most common neonatal lung pathologies using spatially localized line and texture patterns extracted via 2D dual-tree complex wavelet transform (DTCWT). We acquired 1550 LUS images from 42 neonates with varying numbers of lung pathologies. Furthermore, we balanced our data set to avoid bias towards a pathology class.ResultsUsing DTCWT and clinical features as inputs to a linear discriminant analysis (LDA), our approach achieved a per-image cross-validated classification accuracy of 74.39% for the imbalanced data set. Our classification accuracy improved to 92.78% after balancing our data set. Moreover, our proposed framework achieved a maximum per-subject cross-validated classification accuracy of 64.97% with an imbalanced data set while using a balanced data set improves its classification accuracy up to 81.53%.ConclusionOur work could aid in automating the diagnosis of lung pathologies among neonates using LUS. Rapid and accurate diagnosis of lung pathologies could help to decrease neonatal deaths in healthcare institutions that lack well-trained clinicians, especially in developing countries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.