Abstract

Background and objectivesLung cancer is the leading cause of cancer deaths worldwide. With current use of autofluorescent bronchoscopic imaging to detect early lung cancer and limitations of pathologic examinations, a computer-aided diagnosis (CAD) system based on autofluorescent bronchoscopy was proposed to distinguish different pathological cancer types to achieve objective and consistent diagnoses. MethodsThe collected database consisted of 12 adenocarcinomas and 11 squamous cell carcinomas. The corresponding autofluorescent bronchoscopic images were first transformed to a hue (H), saturation (S), and value (V) color space to obtain better interpretation of the color information. Color textural features were respectively extracted from the H, S, and V channels and combined in a logistic regression classifier to classify malignant types by machine learning. ResultsAfter feature selection, the proposed CAD system achieved an accuracy of 83% (19/23), a sensitivity of 73% (8/11), a specificity of 92% (11/12), a positive predictive value of 89% (8/9), a negative predictive value of 79% (11/14), and an area under the receiver operating characteristic curve of 0.81 for distinguishing lung cancer types. ConclusionsThe proposed CAD system based on color textures of autofluorescent bronchoscopic images provides a diagnostic method of malignant types in clinical use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.