Abstract
A complete and explicit classification of all independent local conservation laws of Maxwell's equations in four dimensional Minkowski space is given. Besides the elementary linear conservation laws, and the well-known quadratic conservation laws associated to the conserved stress-energy and zilch tensors, there are also chiral quadratic conservation laws which are associated to a new conserved tensor. The chiral conservation laws possess odd parity under the electric–magnetic duality transformation of Maxwell's equations, in contrast to the even parity of the stress-energy and zilch conservation laws. The main result of the classification establishes that every local conservation law of Maxwell's equations is equivalent to a linear combination of the elementary conservation laws, the stress-energy and zilch conservation laws, the chiral conservation laws, and their higher order extensions obtained by replacing the electromagnetic field tensor by its repeated Lie derivatives with respect to the conformal Killing vectors on Minkowski space. The classification is based on spinorial methods and provides a direct, unified characterization of the conservation laws in terms of Killing spinors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.