Abstract
This study investigates the sound of Hanacaraka in Javanese to select the best frame feature in checking the reading sound. Selection of the right frame feature is needed in speech recognition because certain frames have accuracy at their dominant weight, so it is necessary to match frames with the best accuracy. Common and widely used feature extraction models include the Mel Frequency Cepstral Coefficient (MFCC). The MFCC method has an accuracy of 50% to 60%. This research uses MFCC and the selection of Dominant Weight features for the Javanese language script sound Hanacaraka which produces a frame and cepstral coefficient as feature extraction. The use of the cepstral coefficient ranges from 0 to 23 or as many as 24 cepstral coefficients. In comparison, the captured frame consists of 0 to 10 frames or consists of eleven frames. A sound sampling of 300 recorded voice sampling was tested on 300 voice recordings of both male and female voice recordings. The frequency used is 44,100 kHz 16-bit stereo. The accuracy results show that the MFCC method with the ninth frame selection has a higher accuracy rate of 86% than other frames.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.