Abstract

For each connected real semisimple matrix group, one obtains a constructive list of the irreducible tempered unitary representations and their characters. These irreducible representations all turn out to be instances of a more general kind of representation, here called basic. The result completes Langland's classification of all irreducible admissible representations for such groups. Since not all basic representations are irreducible, a study is made of character identities relating different basic representations and of the commuting algebra for each basic representation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.