Abstract
Image identification and classification is a basic issue in the fields of mainframe visualization and pattern recognition. In today’s world, a great deal of unwanted material is distributed via the Internet. The unwanted information contained inside images, i.e., image spam, endangers email-based communication systems. Unlike textural spam, image spam is difficult to be detected by many machine learning (ML) techniques. This paper intends to investigate and evaluate four deep learning (DL) methods that may be useful for image spam identification. Firstly, neural networks, especially deep neural networks, were trained on various image features. Their resilience was measured on an enhanced dataset, which was created specifically to outwit existing image spam detection methods. Next, a convolution neural network (CNN) was designed, and verified through experiments. Experimental results show that our novel approach for image spam identification outshines other current techniques in the field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.