Abstract

Brain–Computer Interfaces (BCI) systems based on electroencephalography (EEG) signals are experiencing a rapid development, counting with a number of methods, mainly from signal processing and machine learning areas. Although important results have been achieved, a robust performance is still a very challenging task, mainly considering high intra- and inter-subject variability in EEG data and long acquisition time intervals. Recently, Deep Learning methods, such as the Convolutional Neural Networks (CNNs), are being used in BCI systems in search of a performance improvement. However, the straightforward use of EEG data, without any processing step, may limit the full potential of 2D-kernels in CNNs. In light of this, in this work, we consider for classification with 2D-kernel-based CNNs the problem of encoding EEG data to images as a pre-processing stage, which includes the Gramian Angular Difference and Summation Fields, Markov Transition Fields and Recurrence Plots. Additionally, a comparative analysis using a selection of CNNs is performed. Results show a favorable performance for the proposed method, pointing towards a robust BCI system using cross-subject data, with short acquisition time interval.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.