Abstract
This paper focuses on detecting leaf diseases in wheat plants from the beginning to the end of the plant's life cycle. It highlights the best techniques for detecting various types of wheat leaf diseases and emphasizes the use of computer vision, image processing, and machine learning. The main focus is on classifying these diseases through deep convolutional neural networks, a popular image recognition and classification approach. The paper reviews various techniques for classifying image-based wheat leaf diseases, including spot blotch, stripe rust, brown rust, and powdery mildew. The paper aims to summarize the state-of-the-art techniques for detecting wheat leaf diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.