Abstract

AbstractIn this paper, two independent factors, electronic structure at the Fermi energy and electron scattering, both of which determine the electrical resistivity, are clearly separated by using a plot of ρ4K versus RRR (RRR = ρ4K/ρ300K) for icosahedral quasicrystals and their approximants. Each contribution of the electronic structure and the electron scattering on the electrical resistivity was systematically revealed, and the origin for the high resistivities observed in the quasicrystals and approximants is well understood by taking each effect into account. We found that the quasicrystals and approximants are classified into three groups in terms of the electron scattering mechanism, which dominates the temperature dependence of the resistivity. The temperature dependence of the electrical resistivity in the first group is well understood in terms of the Boltzmann transport mechanism, and those in the second and the third groups are in terms of the weak localization and the Anderson localization, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.