Abstract

Deep learning has shown its huge potential in the field of hyperspectral image (HSI) classification. However, most of the deep learning models heavily depend on the quantity of available training samples. In this article, we propose a multitask generative adversarial network (MTGAN) to alleviate this issue by taking advantage of the rich information from unlabeled samples. Specifically, we design a generator network to simultaneously undertake two tasks: the reconstruction task and the classification task. The former task aims at reconstructing an input hyperspectral cube, including the labeled and unlabeled ones, whereas the latter task attempts to recognize the category of the cube. Meanwhile, we construct a discriminator network to discriminate the input sample coming from the real distribution or the reconstructed one. Through an adversarial learning method, the generator network will produce real-like cubes, thus indirectly improving the discrimination and generalization ability of the classification task. More importantly, in order to fully explore the useful information from shallow layers, we adopt skip-layer connections in both reconstruction and classification tasks. The proposed MTGAN model is implemented on three standard HSIs, and the experimental results show that it is able to achieve higher performance than other state-of-the-art deep learning models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call