Abstract

Real-world walking data offers rich insights into a person’s mobility. Yet, daily life variations can alter these patterns, making the data challenging to interpret. As such, it is essential to integrate context for the extraction of meaningful information from real-world movement data. In this work, we leveraged the relationship between the characteristics of a walking bout and context to build a classification algorithm to distinguish between indoor and outdoor walks. We used data from 20 participants wearing an accelerometer on the thigh over a week. Their walking bouts were isolated and labeled using GPS and self-reporting data. We trained and validated two machine learning models, random forest and ensemble Support Vector Machine, using a leave-one-participant-out validation scheme on 15 subjects. The 5 remaining subjects were used as a testing set to choose a final model. The chosen model achieved an accuracy of 0.941, an F1-score of 0.963, and an AUROC of 0.931. This validated model was then used to label the walks from a different dataset with 15 participants wearing the same accelerometer. Finally, we characterized the differences between indoor and outdoor walks using the ensemble of the data. We found that participants walked significantly faster, longer, and more continuously when walking outdoors compared to indoors. These results demonstrate how movement data alone can be used to obtain accurate information on important contextual factors. These factors can then be leveraged to enhance our understanding and interpretation of real-world movement data, providing deeper insights into a person’s health.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.