Abstract
Rising admissions from emergency departments (EDs) to hospitals are a primary concern for many healthcare systems. The issue of how to differentiate urgent admissions from non-urgent or even elective admissions is crucial. We aim to develop a model for classifying inpatient admissions based on a patient's primary diagnosis as either emergency care or elective care and predicting urgency as a numerical value. We use supervised machine learning techniques and train the model with physician-expert judgments. Our model is accurate (96%) and has a high area under the ROC curve (>.99). We provide the first comprehensive classification and urgency categorization for inpatient emergency and elective care. This model assigns urgency values to every relevant diagnosis in the ICD catalog, and these values are easily applicable to existing hospital data. Our findings may provide a basis for policy makers to create incentives for hospitals to reduce the number of inappropriate ED admissions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.