Abstract
Although devised in 1936 by Fisher, discriminant analysis is still rapidly evolving, as the complexity of contemporary data sets grows exponentially. Our classification rules explore these complexities by modeling various correlations in higher-order data. Moreover, our classification rules are suitable to data sets where the number of response variables is comparable or larger than the number of observations. We assume that the higher-order observations have a separable variance-covariance matrix and two different Kronecker product structures on the mean vector. In this article, we develop quadratic classification rules among g different populations where each individual has κth order (κ ≥2) measurements. We also provide the computational algorithms to compute the maximum likelihood estimates for the model parameters and eventually the sample classification rules.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.