Abstract
AbstractThe database of Global Ionospheric Maps (GIMs) produced at Jet Propulsion Laboratory is analyzed. We define high density total electron content (TEC) regions (HDRs) in a map, following certain selection criteria. For the first time, we trained four convolutional neural networks (CNNs) corresponding to four phases of a solar cycle to classify the GIMs by the number of HDRs in each map with 80% accuracy on average. We compared HDR counts for GIMs across ten years to draw conclusions on how the number of HDRs in the GIMs changes throughout the solar cycle. Occurrence of HDRs during different geomagnetic activity conditions is discussed. Catalog of selected HDRs for ten years and four CNN‐based models that can be used to extend classification to other years are provided for the community to use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.