Abstract
There are various varieties of Rice and lentils. Price fabrication and adulteration have been some of the various issues faced by the consumers, farmers and wholesale retailers. Traditional methods for Identification of these similar types of grains and their quality analysis are crude and inaccurate. Methods were tried to implemented earlier but due to financial inability and low efficiency, they weren’t successful. To overcome this problem, the project proposes a method that uses a machine learning technique for identification and quality analysis of these grains. Rice and Lentils which have the maximum consumption have been selected. Lentils are designated into classes based on colors. The technique of determining the elegance of a lentil is with the aid of seed coat shade. Red lentils can be confirmed through the cotyledon coloration. Lentil types may also have a huge variety of seed coat colors from inexperienced, red, speckled inexperienced, black and tan. The cotyledon colour may be red, yellow or inexperienced. The size and color of every Indian Lentil type (i.e. Red, Green, and Yellow, Black, White) are decided to be large or Medium or small, then size and colour end up part of the grade name. An smart machine is used to perceive the kind of Indian lentils from bulk samples. The proposed machine allows kernel length and coloration size using picture processing techniques. These Lentil size measurements, when combined with color attributes of the sample, classify three lentil varieties commonly grown in India with the highest accuracy. Rice is one of most consumed grains in India so its quality is of utmost importance. In this project, we identify and grade five types of rice and grade them with the help of their distinguished features such as size, color, shape, and surface. The project works in three phases viz., Feature Extraction, Training, and Testing. Various rice grain has a different shape, size, surface and various lentils come in different colors, Hence the feature that will be extracted is texture and colors. The method of regression will be adopted for the grading mechanism where the output will be in terms of percentage purity. The methodology for the extraction of the feature will be GLCM and Edge Detection where for supervised learning SVM and Back Propagation will be utilized. The project provides an efficient replacement for the traditional grading mechanism and standardizes the pricing of farm products based on their quality only.
Highlights
Manuscript published on October 30, 2021. *Correspondence Author
The Indian agriculture zone accounts for 18 percent of India's gross domestic product (GDP) and provides employment to 50% of the international locations body of workers
According to the data provided by the Department of Economics and Statics (DES) the production of food grains for the year 2013-2014 is 264 million tons which are increased when compared to (2012-2013) 257million tons
Summary
Agriculture is the most crucial quarter of the IndianManuscript received on October 18, 2021. According to an estimated 85 percent of wheat and 75 percent of oilseeds in Uttar Pradesh, 90 percent of Jute in West Bengal, 70 percent of oilseeds and 35 percent of cotton in Punjab is sold by farmers in the village itself. Such a scenario arises due to the incapacity of the terrible farmers to anticipate long after harvesting their vegetation. According to the data provided by the Department of Economics and Statics (DES) the production of food grains for the year 2013-2014 is 264 million tons which are increased when compared to (2012-2013) 257million tons This is a good symptom for the Indian economy from the agriculture sector. In the year 2001-2002, this contribution declined to just round 26%
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Engineering and Advanced Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.