Abstract

The present work is devoted to the analysis of the G-quadruplex DNA structure using the bioinformatics method. The interest towards quadruplex DNAs is determined by their involvement in the functioning of telomeres and onco-promoters as well as by the possibility to create on their basis aptamers and nanostructures. Here, we present an algorithm for a general analysis of the polymorphism of the G-quadruplex structure from the data bank PDB using original parameters. 74structures were grouped according to the following parameters: the number of DNA strands, the number of G-quartets, and the location and orientation of the connecting loops. Two quantitative parameters were used to describe the quadruplex structure: the twist angle between two adjacent quartets (analogous to that for the complementary pair in the duplex DNA) and the quartet planarity (an original parameter). The distribution patterns of these values are specific for each group of quadruplex structures and are dependent upon the type of connecting loops used (diagonal, lateral or propeller). The tetramolecular loopless parallel quadruplex was used as a comparison template. The lateral loops introduce the strongest distortion into the structure of quadruplexes: the values of the twist angles are the lowest and are not typical for the other quadruplex groups. The loops of the diagonal type introduce much weaker deformation into quadruplexes; the structures with propeller loops are characterized by the optimum geometry of G-quartets. Hence, the correlation between the twist angle and the tension in the structure of quadruplex DNA is revealed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.