Abstract
Tissues can be divided into glandular structures (cells) and non-glandular when we magnify them with a microscope. To classify the two types, we performed experiments using convolutional neural network. We cropped regions of glandular cells and non-glandular in 10 x magnification images. The size of cropped images was between 80 and 100 pixels in width and height. We prepared 932 glandular cells and 1000 non-glandular for the train and test. Of these, 1468 were used for learning and 532 were used for testing. We trained and tested the dataset using a slightly modified pre-trained VGG16. The inside of glandular cells consists of nucleus, lumen and cytoplasm. Normal glandular cells and abnormal glandular cells that we call tubular adenoma have different texture features. But both types of glandular cells have distinct boundaries and specific shapes. In the case of cancer, as the nucleus grows excessively, the boundaries of the glandular cells become unclear and disappear. We trained three types of glandular cells, which is normal, tubular adenoma, and cancer. Experimental results using the pre-trained VGG16 classification showed a high classification accuracy of 99.44%. Only three non-glandular out of the 532 test data were misclassified into glandular cells. The classification method presented in the paper can be used to eliminate false positives that produced by an automatic segmentation system for the pathology image. The performance of the segmentation can be improved by eliminating segmented objects that are false positives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Recent Technology and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.