Abstract

Vitamin C-rich fruits not only taste fresh and delicious but also have the potential to increase the body's resistance to various diseases and maintain a proper nutritional balance. Information about fruits high in vitamin C is very important in order to increase public knowledge about which fruits contain high levels of vitamin C. However, to classify fruits high in vitamin C based on their image, a model is needed that is able to analyze the characteristics present in the image of the fruit. The purpose of this study is to build a classification model for high-vitamin C fruits with a combination of the Self-Organizing Map (SOM) artificial neural network algorithm and K-Means Clustering. Prior to classification, an image segmentation process is carried out using the K-Means Clustering algorithm, which will separate the image into parts that have similar visual characteristics. After the segmented image, the features of the object are extracted based on shape and texture. After the features of the image have been obtained, proceed with classifying images using the SOM algorithm by mapping multidimensional data into a lower-dimensional spatial representation to obtain the appropriate group or class. The accuracy test results for the built model produce an accuracy value of 93.33% and are included in the good category

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.