Abstract

We classify states of four rebits, that is, we classify the orbits of the group Gˆ(R)=SL(2,R)4 in the space (R2)⊗4. This is the real analogon of the well-known SLOCC operations in quantum information theory. By constructing the Gˆ(R)-module (R2)⊗4 via a Z/2Z-grading of the simple split real Lie algebra of type D4, the orbits are divided into three groups: semisimple, nilpotent and mixed. The nilpotent orbits have been classified in Dietrich et al. (2017) [26], yielding applications in theoretical physics (extremal black holes in the STU model of N=2,D=4 supergravity, see Ruggeri and Trigiante (2017) [51]). Here we focus on the semisimple and mixed orbits which we classify with recently developed methods based on Galois cohomology, see Borovoi et al. (2021) [8,9]. These orbits are relevant to the classification of non-extremal (or extremal over-rotating) and two-center extremal black hole solutions in the STU model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.