Abstract
We propose a new technique for the automated classification of focal and nonfocal electroencephalogram (EEG) signals using Fourier-based rhythms in this paper. The EEG rhythms, namely, delta, theta, alpha, beta and gamma, are obtained using the discrete Fourier transform (DFT)-based filter bank applied on EEG signals. The mean-frequency (MF) and root-mean-square (RMS) bandwidth features are derived using DFT-based computation on rhythms of EEG signals and their envelopes. These derived features, namely, MF and RMS bandwidths have been provided as an input feature set for the classification of focal and nonfocal EEG signals using a least-squares support vector machine (LS-SVM) classifier. We present experimental results obtained from the publicly available database in order to demonstrate the effectiveness of the proposed feature sets for the automated classification of the focal and nonfocal classes of EEG signals. The obtained classification accuracy in this dataset for the automated classification of focal and nonfocal 50 pairs and 750 pairs of EEG signals are 89.7% and 89.52%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.