Abstract
In the last decade, the low cost and easy availability of Unmanned Aerial Vehicles (UAVs) have led to their enormous use in modern society, which leads to privacy and security issues. To keep an eye on the intruder UAV in the restricted area, it needs to classify the other flying objects, such as helicopters, birds, etc. Hence, this work is taken up by considering the Micro-Doppler Signature (MDS) of the flying objects from the different configurations of radar antenna array such as Uniform Linear Array (ULA) and Uniform Rectangular Array (URA). In order to obtain the MDS from the intruder UAV, proper positioning or configuration of the radar antenna array is needed to avoid performance degradation due to the large Angle of Arrival (AoA) of the received signal. A novel Hybrid Convolutional Neural Network-Memetic algorithm is proposed to classify the flying object, which is evaluated for both MDS data collected from the HB100 radar set-up by varying configurations and Real Doppler RAD-DAR (RDRD) existing dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.