Abstract
A semigroup S is called permutable if $$ \rho $$ ◦ σ = σ ◦ $$ \rho $$ for any pair of congruences $$ \rho $$ , σ on S. A local automorphism of the semigroup S is defined as an isomorphism between two subsemigroups of this semigroup. The set of all local automorphisms of a semigroup S with respect to an ordinary operation of composition of binary relations forms an inverse monoid of local automorphisms. We present a classification of all finite nilsemigroups for which the inverse monoid of local automorphisms is permutable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.