Abstract
The use of Bayesian neural networks is a novel approach for the classification of γ-ray sources. We focus on the classification of Fermi-LAT blazar candidates, which can be divided into BL Lacertae objects and Flat Spectrum Radio Quasars. In contrast to conventional dense networks, Bayesian neural networks provide a reliable estimate of the uncertainty of the network predictions. We explore the correspondence between conventional and Bayesian neural networks and the effect of data augmentation. We find that Bayesian neural networks provide a robust classifier with reliable uncertainty estimates and are particularly well suited for classification problems that are based on comparatively small and imbalanced data sets. The results of our blazar candidate classification are valuable input for population studies aimed at constraining the blazar luminosity function and to guide future observational campaigns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.