Abstract

Under certain conditions, one electrical parameter (independent variable) is not enough to detect high-impedance faults on certain surface conditions. These faults do not draw sufficient current for detection and may draw less current than similar faults on other soil surfaces. Moreover, because every electrical detection parameter displays characteristics of randomness, it is difficult to assign a probability that a given event is a high-impedance fault, rather than a switching event. It has been shown that detection by induction laws can improve the classification of faults and switching events. The second and third laws of induction are utilized with a minimum entropy method. Setting detection threshold values using induction methods is also proposed. The methods presented are taken from ongoing research in high-impedance fault detection. While the techniques have not been reduced to practice or field-tested, they hold promise for future improvements in the relaying of high-impedance faults.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.