Abstract

Digital elevation model (DEM) data were used with climate data to estimate productivity in 19 Eucalyptus plantations in Minas Gerais state, Brazil. Typically, plantation and individual stand growth and productivity estimates, such as Site Index (SI) and Mean Annual Increment (MAI), are based on field measures of height, tree diameter and age. Using a Random Forest modelling approach, SI and MAI were related to: (i) DEM-based geomorphometric variables and (ii) WorldClim historical macro-climatic measures. Three operational SI classes (high, medium and low productivity) in 180 stands were mapped with an overall accuracy of 91.6%. Medium and high productivity sites were the most accurately classified. Low productivity sites had 76.5% producer’s accuracy and 92.9% user’s accuracy, and were the most extensive in the study area. Such sites are considered of high importance from a plantation management perspective since additional forestry operations are likely required to address low productivity and growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.