Abstract

The coexistence of quantum confined energy levels and defect energy levels in quantum dot (QD) structures may cause difficulties in distinguishing between their different origin when using deep-level transient spectroscopy (DLTS). Using InAs/GaAs QDs as demonstration vehicles, we present methodologies to obtain such a classification by DLTS. QD-related spectra measured as a function of repetition frequency of electrical pulses, f, or temperature, T, and reverse voltage, V (R), are depicted as contour plots on (f, V (R)) and (T, V (R)) planes, thus reflecting the complex thermal and tunneling emission of electrons from the ground and excited states. Defect-related levels give rise to different contour patterns and undergo modification, exhibiting double-peak structured emission when defects are agglomerated in the vicinity of the QD plane. This effect is interpreted in terms of an interaction between electron states in traps and the confined QD states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.