Abstract

The aim of this paper is twofold. First, we present a thorough experimental study to show the superiority of the generalization capability of the support vector machine (SVM) approach in the automatic classification of electrocardiogram (ECG) beats. Second, we propose a novel classification system based on particle swarm optimization (PSO) to improve the generalization performance of the SVM classifier. For this purpose, we have optimized the SVM classifier design by searching for the best value of the parameters that tune its discriminant function, and upstream by looking for the best subset of features that feed the classifier. The experiments were conducted on the basis of ECG data from the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia database to classify five kinds of abnormal waveforms and normal beats. In particular, they were organized so as to test the sensitivity of the SVM classifier and that of two reference classifiers used for comparison, i.e., the k-nearest neighbor (kNN) classifier and the radial basis function (RBF) neural network classifier, with respect to the curse of dimensionality and the number of available training beats. The obtained results clearly confirm the superiority of the SVM approach as compared to traditional classifiers, and suggest that further substantial improvements in terms of classification accuracy can be achieved by the proposed PSO-SVM classification system. On an average, over three experiments making use of a different total number of training beats (250, 500, and 750, respectively), the PSO-SVM yielded an overall accuracy of 89.72% on 40438 test beats selected from 20 patient records against 85.98%, 83.70%, and 82.34% for the SVM, the kNN, and the RBF classifiers, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.