Abstract
An efficient feature extraction method for two classes of electroencephalography (EEG) is demonstrated using Common Spatial Patterns (CSP) with optimal spatial filters. However, the effects of artifacts and non-stationary uncertainty are more pronounced when CSP filtering is used. Furthermore, traditional CSP methods lack frequency domain information and require many input channels. Therefore, to overcome this shortcoming, a feature extraction method based on Online Recursive Independent Component Analysis (ORICA)-CSP is proposed. For EEG-based brain—computer interfaces (BCIs), especially online and real-time BCIs, the most widely used classifiers used to be linear discriminant analysis (LDA) and support vector machines (SVM). Previous evaluations clearly show that SVMs generally outperform other classifiers in terms of performance. In this case, Adaptive Support Vector Machine (A-SVM) is used for classification together with the ORICA-CSP method. The results are promising, and the experiments are performed on EEG data of 4 classes’ motor images, namely Dataset 2a of BCI Competition IV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.