Abstract

Electroencephalogram (EEG) signals based Brain Computer Interface (BCI) is employed to help disabled people to interact better with the environment. EEG signals are recorded through BCI system to translate it to control commands. There are a large body of literature targeting EEG feature extraction and classification for Motor Imagery tasks. Motor imagery task have several features can be extracted to use in classification. However, using more features consume running time and using irrelevant and redundant features affect the performance of the used classifier. This paper is dedicated to extracting the best feature vector for motor imagery task. This work suggests two feature selection methods based on Mutual Information (MI) including Minimum Redundancy Maximal Relevance (MRMR) and maximal Relevance (MaxRel). Adaptive Neuro Fuzzy Inference System (ANFIS) classifier with Subtractive clustering method is utilized for EEG signals classifications. The suggested methods are applied to BCI Competition III dataset IVa and IVb and BCI Competition II dataset III.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call