Abstract

This paper illustrates the improvement in accuracy of classification for electroencephalogram (EEG) signals measured during a memory encoding task, by using features based on a mean square error (MSE) optimal time-frequency estimator. The EEG signals are modelled as Locally Stationary Processes, based on the modulation in time of an ordinary stationary covariance function. After estimating the model parameters, we compute the MSE optimal kernel for the estimation of the Wigner-Ville spectrum. We present a simulation study to evaluate the performance of the derived optimal spectral estimator, compared to the single windowed Hanning spectrogram and the Welch spectrogram. Further, the estimation procedure is applied to the measured EEG and the time-frequency features extracted from the spectral estimates are used to feed a neural network classifier. Consistent improvement in classification accuracy is obtained by using the features from the proposed estimator, compared to the use of existing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.