Abstract
Classification of electrocardiogram (ECG) signals plays an important role in diagnoses of heart diseases. An accurate ECG classification is a challenging problem. This paper presents a survey of ECG classification into arrhythmia types. Early and accurate detection of arrhythmia types is important in detecting heart diseases and choosing appropriate treatment for a patient. Different classifiers are available for ECG classification. Amongst all classifiers, artificial neural networks (ANNs) have become very popular and most widely used for ECG classification. This paper discusses the issues involved in ECG classification and presents a detailed survey of preprocessing techniques, ECG databases, feature extraction techniques, ANN based classifiers, and performance measures to address the mentioned issues. Furthermore, for each surveyed paper, our paper also presents detailed analysis of input beat selection and output of the classifiers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.