Abstract
Nonlinear time history analysis (NTHA) is an important engineering method in order to evaluate the seismic vulnerability of buildings under earthquake loads. However, it is time consuming and requires complex calculations and a high memory machine. In this study, two networks were used for damage classification: multiclass support vector machine (M-SVM) and combination of multilayer perceptron neural network with M-SVM (MM-SVM). In order to collect data, three frames ofR/Cslab column frame buildings with wide beams in slab were considered. For NTHA, twenty different ground motion records were selected and scaled to ten different levels of peak ground acceleration (PGA). Thus, 600 obtained data from the numerical simulations were applied to M-SVM and MM-SVM in order to predict the global damage classification of samples based on park and Ang damage index. Amongst the four different kernel tricks, the Gaussian function was determined as an efficient kernel trick using the maximum total accuracy method of test data. By comparing the obtained results from M-SVM and MM-SVM, the total classification accuracy of MM-SVM is more than M-SVM and it is accurate and reliable for global damage classification ofR/Cslab column frames. Furthermore, the proposed combined model is able to classify the classes with low members.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.