Abstract
The development of advanced radar system for detection and classification of UAVs is an essential requirement for today’s societal security. Such intelligent system could able to analyze the received radar signal and extract relevant information by utilizing sophisticated algorithm. In this letter, the utilization of micro-Doppler signature (MDS) for classification of drones, using convolutional neural network (CNN) model has been presented. We have generated images of micro-Doppler signatures using W-band radar system and used it for classification purpose. In this work, phase stretch transform (PST) has been utilized for edge detection and enhancement of the micro-Doppler images, to generate the edge-enhanced micro-Doppler image (EMDI). The comparison based on classification performance of CNN with different input datasets shows that the EMDI based CNN model outperformed the micro-Doppler image (MDI) based model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.