Abstract
We propose a model for data classification using isolated quantum d\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\varvec{d}$$\\end{document}-level systems or else qudits. The procedure consists of an encoding phase where classical data are mapped on the surface of the qudit’s Bloch hyper-sphere via rotation encoding, followed by a rotation of the sphere and a projective measurement. The rotation is adjustable in order to control the operator to be measured, while additional weights are introduced in the encoding phase adjusting the mapping on the Bloch’s hyper-surface. During the training phase, a cost function based on the average expectation value of the observable is minimized using gradient descent thereby adjusting the weights. Using examples and performing a numerical estimation of lossless memory dimension, we demonstrate that this geometrically inspired qudit model for classification is able to solve nonlinear classification problems using a small number of parameters only and without requiring entangling operations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.