Abstract
In this paper, a simplified yet efficient architecture of a deep convolutional neural network is presented for lung image classification. The images used for classification are computed tomography (CT) scan images obtained from two scientifically used databases available publicly. Six external shape-based features, viz. solidity, circularity, discrete Fourier transform of radial length (RL) function, histogram of oriented gradient (HOG), moment, and histogram of active contour image, have also been identified and embedded into the proposed convolutional neural network. The performance is measured in terms of average recall and average precision values and compared with six similar methods for biomedical image classification. The average precision obtained for the proposed system is found to be 95.26% and the average recall value is found to be 69.56% in average for the two databases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.