Abstract

Deep learning provides the healthcare industry with the ability to analyse data at exceptional speeds without compromising on accuracy. These techniques are applicable to healthcare domain for accurate and timely prediction. Convolutional neural network is a class of deep learning methods which has become dominant in various computer vision tasks and is attracting interest across a variety of domains, including radiology. Lung diseases such as tuberculosis (TB), bacterial and viral pneumonias, and COVID-19 are not predicted accurately due to availability of very few samples for either of the lung diseases. The disease could be easily diagnosed using X-ray or CT scan images. But the number of images available for each of the disease is not as equally as other resulting in imbalance nature of input data. Conventional supervised machine learning methods do not achieve higher accuracy when trained using a lesser amount of COVID-19 data samples. Image data augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of images in the dataset. Data augmentation helped reduce overfitting when training a deep neural network. The SMOTE (Synthetic Minority Oversampling Technique) algorithm is used for the purpose of balancing the classes. The novelty in this research work is to apply combined data augmentation and class balance techniques before classification of tuberculosis, pneumonia, and COVID-19. The classification accuracy obtained with the proposed multi-level classification after training the model is recorded as 97.4% for TB and pneumonia and 88% for bacterial, viral, and COVID-19 classifications. The proposed multi-level classification method produced is ~8 to ~10% improvement in classification accuracy when compared with the existing methods in this area of research. The results reveal the fact that the proposed system is scalable to growing medical data and classifies lung diseases and its sub-types in less time with higher accuracy.Graphical

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.