Abstract

The deterioration of concrete structures due to rebar corrosion is a key issue affecting the safety and service life of civil infrastructure. Reinforced concrete (RC) structures in coastal areas are subjected to harsh environmental conditions that cause rebar corrosion. From the perspective of safety, repair, and structural rehabilitation, it is essential to ascertain the level of corrosion severity and associated damage in RC structures through non-destructive evaluation (NDE) techniques. In this study, the potential of pattern recognition techniques for ascertaining the severity damage at various stages of rebar corrosion in concrete samples was explored. A contact ultrasonic compressional wave transducer pair with 250 kHz centre frequency was used as source and reflected signals from the rebar were acquired using a tied-together scanning approach. To expedite the corrosion process in the laboratory, accelerated corrosion of the embedded rebar was employed. The synthetic aperture focusing technique (SAFT) was applied to reconstruct the image of the concrete subsurface from the acquired B-scans. Two approaches, i.e., the Mahalanobis distance (MD) and linear discriminant analysis (LDA), were adopted; both methods correctly classified the level of corrosion severity and damage to the concrete. The developed pattern recognition techniques can, therefore, be potential tools for generating important information towards economical and timely repair of damaged concrete structures affected by rebar corrosion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.