Abstract
The current research about the classification of coffee fruit ripeness based on multispectral images has been developed using the Convolutional Neural Network (CNN) method to extract patterns from highdimensional multispectral images. The high complexity of CNN allows the model to capture complex features but requires more time and computational resources for model training and testing. Therefore, in this study, classification is performed using a more straightforward method such as Naïve Bayes because its complexity only depends on the number of features and samples. The method only considers each feature independently, so it has high speed and does not require a lot of computational resources. Naïve Bayes is applied to color and texture features extracted from multispectral images of coffee fruit. There are 300 features consisting of 60 color features and 240 texture features. Experiments were conducted based on the comparison of training and testing data and the use of each feature. The combination of color and texture features showed better performance than color or texture features alone, with the highest accuracy reaching 91.01%. In conclusion, using Naïve Bayes is still reasonably good in classifying the ripeness of coffee fruit based on multispectral images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.