Abstract

Discrimination of seismicity distributed in different areas is essential for reliable seismic risk assessment in mines. Although machine learning has been widely applied in seismic data processing, feasibility and reliability of applying this technique to classify spatially clustered seismic events in underground mines are yet to be investigated. In this research, two groups of seismic events with a minimum local magnitude (ML) of −3 were observed in an underground coal mine. They were respectively located around a dyke and the longwall face. Additionally, two types of undesired signals were also recorded. Four machine learning methods, i.e. random forest (RF), support vector machine (SVM), deep convolutional neural network (DCNN), and residual neural network (ResNN), were used for classifying these signals. The results obtained based on a primary dataset showed that these seismic events could be classified with at least 91% accuracy. The DCNN using seismogram images as the inputs reached the best performance with more than 94% accuracy. As mining is a dynamic progress which could change the characteristics of seismic signals, the temporal variance in the prediction performance of DCNN was also investigated to assess the reliability of this classifier during mining. A cascaded workflow consisting of database update, model training, signal prediction, and results review was established. By progressively calibrating the DCNN model, it achieved up to 99% prediction accuracy. The results demonstrated that machine learning is a reliable tool for the automatic discrimination of spatially clustered seismicity in underground mining.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.