Abstract

A new shape recognition-based neural network built with universal feature planes, called Shape Cognitron (S-Cognitron) is introduced to classify clustered microcalcifications. The architecture of S-Cognitron consists of two modules and an extra layer, called 3D figure layer lies in between. The first module contains a shape orientation layer, built with 20 cell planes of low level universal shape features to convert first-order shape orientations into numeric values, and a complex layer, to extract second-order shape features. The 3D figure layer is a feature extract-display layer that extracts the shape curvatures of an input pattern and displays them as a 3D figure. It is then followed by a second module made up of a feature formation layer and a probabilistic neural network-based classification layer. The system is evaluated by using Nijmegen mammogram database and experimental results show that sensitivity and specificity can reach 86.1 and 74.1%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.