Abstract

This paper proposes a new classification for clastic coastal environments which includes the full range of major depositional settings including deltas, strand plains, tidal flats, estuaries and lagoons. This classification includes both morphologic and evolutionary components and is based on dominant coastal processes. It has the potential to predict responses in geomorphology, facies and stratigraphy. The significance of this classification is its evolutionary capability, and its inclusion of all major clastic coastal depositional environments, making it more comprehensive than previous classifications. We employ a ternary process classification with two axes. The first (horizontal axis) is defined as the relative power of wave versus tidal processes. The second (vertical) axis represents relative fluvial power (increasing upward). A ternary diagram defined by these axes can be used to illustrate the genetic process-response relationships between major coastal environments. The evolutionary classification combines the concept of two sediment sources (river and marine) with a relative sea-level parameter to classify embayed as well as linear and elongate/lobate shorelines. This approach identifies the evolutionary relationships between coastal sedimentary environments. The new ternary approach to process classification can be applied to estuaries and lagoons to define wave and tide end-member facies models, each consisting of a tripartite facies zonation. The evolutionary classification is compatible with sequence stratigraphy because sediment supply and relative sea level are included, and serves as a starting point for more refined coastal stratigraphic analyses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call