Abstract

<p style='text-indent:20px;'>The theory of abstract Friedrichs operators, introduced by Ern, Guermond and Caplain (2007), proved to be a successful setting for studying positive symmetric systems of first order partial differential equations (Fried-richs, 1958), nowadays better known as Friedrichs systems. Recently, Antonić, Michelangeli and Erceg (2017) presented a purely operator-theoretic description of abstract Friedrichs operators, allowing for application of the universal operator extension theory (Grubb, 1968). In this paper we make a further theoretical step by developing a decomposition of the graph space (maximal domain) as a direct sum of the minimal domain and the kernels of corresponding adjoints. We then study one-dimensional scalar (classical) Friedrichs operators with variable coefficients and present a complete classification of admissible boundary conditions.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.