Abstract
This paper describes the application of a probabilistic neural network (PNN) to the classification of normal human chromosomes. The inputs to the network are 30 different features extracted from each chromosome in digitized images of metaphase spreads. The output is 1 of 24 different classes of chromosomes (the 22 autosomes plus the sex chromosomes X and Y). An updating procedure was implemented to take advantage of the fact that in a normal somatic cell only two chromosomes can be assigned to each class. The network has been tested using the Copenhagen, Edinburgh, and Philadelphia databases of digitized images of human chromosomes. The recognition rates achieved in this study are superior to those reported using either the maximum likelihood or back propagation neural network techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.