Abstract

<abstract><p>An associative Artinian ring with an identity is a chain ring if its lattice of left (right) ideals forms a unique chain. In this article, we first prove that for every chain ring, there exists a certain finite commutative chain subring which characterizes it. Using this fact, we classify chain rings with invariants $ p, n, r, k, k', m $ up to isomorphism by finite commutative chain rings ($ k' = 1 $). Thus the classification of chain rings is reduced to that of finite commutative chain rings.</p></abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.