Abstract
In this paper, using optimization methods on Riemannian submanifolds, we establish two improved inequalities for generalized normalized δ-Casorati curvatures of Lagrangian submanifolds in complex space forms. We provide examples showing that these inequalities are the best possible and classify all Casorati ideal Lagrangian submanifolds (in the sense of B.-Y. Chen) in a complex space form. In particular, we generalize the recent results obtained in G.E. Vîlcu (2018) [34].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.