Abstract
Leaf characteristics provide many useful clues for taxonomy. We used a back-propagation artificial neural network (BP-ANN) and C-support vector machines (C-SVMs) to classify 47 species from 3 sections of genus Camellia (16 from sect. Chrysanthae, 16 from sect. Tuberculata, and 15 from sect. Paracamellia). The classification model was constructed based on 7 leaf anatomy attributes including, area of adaxial epidermal cell, thickness of adaxial epidermal cell, thickness of palisade parenchyma, thickness of total leaf, thickness of spongy parenchyma, thickness of abaxial epidermal cell, and area of abaxial epidermal cell. Model parameters of C-SVM, comprising regularization parameter (C) and kernel parameter (\gamma), were optimized by cross-validation. The best classification accuracy of the 3 Camellia sections was achieved by the radial basis function SVM classifier (with parameters C = 32, \gamma = 0.13), as well as the sigmoid SVM classifier (with parameters C = 32, \gamma = 0.13), which was up to 84.00% in the training set and 90.91% in the prediction set, respectively. Compared with BP-ANN, SVM yields slightly higher prediction accuracy, which indicates that it is feasible to accurately classify the 3 sections of Camellia using SVMs based on leaf anatomy data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.