Abstract

<p class="Default">In this paper, the current problems associated with the classification of brown earths, are presented. According to the Polish Soil Classification (PSC) (1989, 2011), base saturation is the main parameter for identifying eutrophic and dystrophic brown soils. In practice, however, it is not possible to determine the base saturation value in the field. Therefore, the aim of this study was to estimate the base saturation using a regression equation and create a field guide for brown earths, based on the pH value, measured using a Hellige indicator, and the calcium carbonate content. Determination of the pH ranges enabled the classification of brown earth types in the field. These results suggest that pH can be used as a proxy for base saturation especially in the field. A change in the hierarchy of soil (sub)types is proposed for the new Polish Soil Classification.</p>

Highlights

  • Brown earths are one of the most common soil types in Poland

  • The analyses focused on the horizons at the depth from 25 to 75 cm, because this is the depth which is used for classifying brown earths (PSC 2011)

  • The base saturation (BS) values ranged from 63.3% to 97.6%, with a mean value of 88.9%, whereas the HS values ranged from 2.4% to 36.7%, with a mean of 11.1%

Read more

Summary

Introduction

Brown earths are one of the most common soil types in Poland. They occupy large areas, especially in mountainous regions and in southern and south-eastern Poland (Skiba et al 2003, Skłodowski and Bielska 2009). Classification (PSC 2011), brown earths have been divided into four main types – eutrophic brown soils, dystrophic brown soils, brown alluvial soils, and brown rendzinas. In the previous edition of the PSC (1989), the types were typical brown soils (in Polish, brunatne właściwe), acidic brown soils (brunatne kwaśne) and leached proper brown soils (brunatne wyługowane). Both editions of the PSC (1989, 2011) classified brown earths according to a diagnostic cambic horizon, base saturation (BS) at a depth of 25–75 cm and content of CaCO3. The change in BS limit value from 30% (PSC 1989) to 60% (PSC 2011) for eutrophic brown soils (typical brown soils) and dystrophic brown soils (brown soils) is misleading. According to botany and forest science, habitats such as Galio odorati-Fagetum, Melico-Fagetum (żyzna buczyna niżowa) and Dentario glandulosae-Fagetum (żyzna buczyna górska) are very fertile habitats that cannot grow on dystrophic soils (Brożek 2012)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.