Abstract

A brain–computer interface (BCI) is a way of translating an individuals’ thoughts to control a computer or an external mechanical device. Studying brain activities in a reproducible manner, this study explores the possibility of using real-time functional-near infrared spectroscopy (fNIRS) to detect brain hemodynamic features for BCI commands. Sixteen channel brain activities associated with two distinct mental tasks were measured from seven healthy subjects. The tasks represented neural activities arising from a visual observation of a motor action related to hand movements of the subjects. Sensitive signatures of task relevant neural activities were further extracted from hemodynamic signals in the prefrontal cortex of the brain, and subsequently were translated into pre-determined computer commands using a set of algorithms. The decoded commands allowed volunteer subjects to control an external device in real-time through their mental intentions. The obtained results demonstrate the potential of the current study as an alternative fNIRS-BCI paradigm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.