Abstract
In continuous-time dynamical systems, a periodic orbit becomes a fixed point on a certain Poincaré section. The eigenvalues of the Jacobian matrix at this fixed point determine the local stability of the periodic orbit. Analogously, a quasi-periodic orbit (2-torus) becomes an invariant closed curve (ICC) on a Poincaré section. From the Lyapunov exponents of an ICC, we can determine the time average of the exponential divergence rate of the orbit, which corresponds to the eigenvalues of a fixed point. We denote the Lyapunov exponent with the smallest nonzero absolute value as the Dominant Lyapunov Exponent (DLE). A local bifurcation manifests as a crossing or touch of the DLE locus with zero. However, the type of bifurcation cannot be determined from the DLE. To overcome this problem, we define the Dominant Lyapunov Bundle (DLB), which corresponds to the dominant eigenvectors of a fixed point. We prove that the DLB of a 1-torus in a map can be classified into four types: A+(annulus and orientation preserving), A-(annulus and orientation reversing), M (Möbius band), and F (focus). The DLB of a 2-torus in a flow can be classified into three types: A+× A+, A-× M (equivalently M × A-and M × M), and F × F. From the results, we conjecture the possible local bifurcations in both cases. For the 1-torus in a map, we conjecture that type A+and A-DLBs correspond to a saddle-node and period-doubling bifurcations, respectively, whereas a type M DLB denotes a double-covering bifurcation, and type F relates to a Neimark–Sacker bifurcation. Similarly, for the 2-torus in a flow, we conjecture that type A+× A+DLBs correspond to saddle-node bifurcations, type A-× M DLBs to double-covering bifurcations, and type F × F DLBs to the Neimark–Sacker bifurcations. After introducing the mathematical concepts, we provide a DLB-calculating algorithm and illustrate all of the above bifurcations by examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.